Nitrogen and carbon concentrations in Swedish headwater streams in relation to forest status determined by the probabilistic classifier method

Mats Fröberg¹, Stefan Löfgren¹, Jun Yu², Jakob Nisell¹, Bo Ranneby²

¹. Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala.
². Centre of Biostochastics, Swedish University of Agricultural Sciences, Umeå.
Classification of forest status in 200 small catchments

Analysis of stream water chemistry
Calibration of forest classification from satellite images against data from Swedish National Forest Inventory

~ 20 000 permanent plots
The concept of probabilistic classifier - a cost-efficient method for terrestrial monitoring

Preliminary classification
"mixed forest" tree species & age
8 classes
pixel=25 x 25 m

Calculation of entropy
red= not OK
Green & yellow= OK

Calculation of probability for each pixel
(∑ = 1)

Probability distribution per pixel

New field survey in selected areas

New improved classification
Forest classification:

- Forest growth + Biomass (mean)
- Percent coverage of 8 forest classes

<table>
<thead>
<tr>
<th>Forest growth</th>
<th>Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands, High basal area</td>
<td>Wetlands, Low basal area</td>
</tr>
<tr>
<td>Clear-cuts</td>
<td></td>
</tr>
<tr>
<td>>70% Pine</td>
<td>>70% Spruce</td>
</tr>
<tr>
<td>>50% Deciduous</td>
<td></td>
</tr>
<tr>
<td>20-50% Deciduous</td>
<td>>70% Other</td>
</tr>
</tbody>
</table>

- Forest productivity
- Fens and bogs
- Clear-cuts
- Dominating tree species
- Mixed forests
- Satellite data from whole catchment
- Satellite data for 20-25 m wide buffer zone along the stream
Water chemistry data

- 100 randomly selected forested headwater catchment per region
- Four seasons (spring, summer, autumn, late autumn)
- Total organic carbon (TOC)
- Total Nitrogen (TN)
- Total inorganic nitrogen (TIN)
Bayesian Model Averaging

Models that perform well enough are accepted and the goodness of fit used as weights.

Example of outputs:
• Probabilities for variables to be included in the models.
• Proportion of positive or negative signs in the models.
• Means for coefficients in the model.
• Best model
TOC

Predicted vs. Observed for best models for each season (Log scale)

<table>
<thead>
<tr>
<th>Season</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>0.56</td>
</tr>
<tr>
<td>Summer</td>
<td>0.26</td>
</tr>
<tr>
<td>Autumn</td>
<td>0.50</td>
</tr>
<tr>
<td>Late autumn</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Bubble size:
Chance of being included in models.

Y axis:
Index of positive or negative sign in models.

X axis:
Four seasons.

Red bubbles:
Included in top model
Spring: $R^2=0.66$
Summer: $R^2=0.47$
Autumn: $R^2=0.61$
Late autumn: $R^2=0.61$
<table>
<thead>
<tr>
<th>Forest growth</th>
<th>Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands, High basal area</td>
<td>Wetlands, Low basal area</td>
</tr>
<tr>
<td>Clear-cuts</td>
<td>Pine70</td>
</tr>
<tr>
<td>>70% Pine</td>
<td>Spruce70</td>
</tr>
<tr>
<td>>70% Spruce</td>
<td>Deciduous50</td>
</tr>
<tr>
<td>>50% Deciduous</td>
<td>Deciduous2050</td>
</tr>
<tr>
<td>20-50% Deciduous</td>
<td>Other</td>
</tr>
<tr>
<td>>70% Other</td>
<td></td>
</tr>
</tbody>
</table>
Forest growth

Biomass

Wetlands, High basal area
Wetlands, Low basal area

Clear-cuts

>70% Pine
>70% Spruce
>50% Deciduous

20-50% Deciduous
>70% Other
10 percentage points increase in wetland with high basal area will lead to:

29% increase in TOC concentration.
12% increase in TN concentration.

(mean of weighed coefficients)
10 percentage points increase in clearcuts
 → 9% increase in TIN concentration

10 percentage points increase in mixed forest:
 → about 20% decrease in TIN concentration.
Conclusions

• Carbon and nitrogen concentrations could be successfully modeled using forest status classified from satellite images.

• Data for near-stream buffer zone are usually not important in models.

• TOC and TN are positively related to forest growth and wetlands.

• Clearcuts lead to increased and mixed forests to decreased TIN concentrations.

• More model testing necessary.